3.2392 \(\int \frac{(1-2 x)^{5/2} \sqrt{3+5 x}}{2+3 x} \, dx\)

Optimal. Leaf size=128 \[ \frac{1}{9} \sqrt{5 x+3} (1-2 x)^{5/2}+\frac{59}{180} \sqrt{5 x+3} (1-2 x)^{3/2}+\frac{6401 \sqrt{5 x+3} \sqrt{1-2 x}}{5400}+\frac{250433 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )}{16200 \sqrt{10}}+\frac{98}{81} \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right ) \]

[Out]

(6401*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/5400 + (59*(1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/180 + ((1 - 2*x)^(5/2)*Sqrt[3 + 5
*x])/9 + (250433*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/(16200*Sqrt[10]) + (98*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7
]*Sqrt[3 + 5*x])])/81

________________________________________________________________________________________

Rubi [A]  time = 0.0511282, antiderivative size = 128, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.269, Rules used = {101, 154, 157, 54, 216, 93, 204} \[ \frac{1}{9} \sqrt{5 x+3} (1-2 x)^{5/2}+\frac{59}{180} \sqrt{5 x+3} (1-2 x)^{3/2}+\frac{6401 \sqrt{5 x+3} \sqrt{1-2 x}}{5400}+\frac{250433 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )}{16200 \sqrt{10}}+\frac{98}{81} \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((1 - 2*x)^(5/2)*Sqrt[3 + 5*x])/(2 + 3*x),x]

[Out]

(6401*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/5400 + (59*(1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/180 + ((1 - 2*x)^(5/2)*Sqrt[3 + 5
*x])/9 + (250433*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/(16200*Sqrt[10]) + (98*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7
]*Sqrt[3 + 5*x])])/81

Rule 101

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a +
b*x)^m*(c + d*x)^n*(e + f*x)^(p + 1))/(f*(m + n + p + 1)), x] - Dist[1/(f*(m + n + p + 1)), Int[(a + b*x)^(m -
 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[c*m*(b*e - a*f) + a*n*(d*e - c*f) + (d*m*(b*e - a*f) + b*n*(d*e - c*f))
*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && GtQ[m, 0] && GtQ[n, 0] && NeQ[m + n + p + 1, 0] && (Integ
ersQ[2*m, 2*n, 2*p] || (IntegersQ[m, n + p] || IntegersQ[p, m + n]))

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{5/2} \sqrt{3+5 x}}{2+3 x} \, dx &=\frac{1}{9} (1-2 x)^{5/2} \sqrt{3+5 x}-\frac{1}{9} \int \frac{\left (-52-\frac{177 x}{2}\right ) (1-2 x)^{3/2}}{(2+3 x) \sqrt{3+5 x}} \, dx\\ &=\frac{59}{180} (1-2 x)^{3/2} \sqrt{3+5 x}+\frac{1}{9} (1-2 x)^{5/2} \sqrt{3+5 x}-\frac{1}{270} \int \frac{\left (-\frac{5421}{2}-\frac{19203 x}{4}\right ) \sqrt{1-2 x}}{(2+3 x) \sqrt{3+5 x}} \, dx\\ &=\frac{6401 \sqrt{1-2 x} \sqrt{3+5 x}}{5400}+\frac{59}{180} (1-2 x)^{3/2} \sqrt{3+5 x}+\frac{1}{9} (1-2 x)^{5/2} \sqrt{3+5 x}-\frac{\int \frac{-\frac{181833}{4}-\frac{751299 x}{8}}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx}{4050}\\ &=\frac{6401 \sqrt{1-2 x} \sqrt{3+5 x}}{5400}+\frac{59}{180} (1-2 x)^{3/2} \sqrt{3+5 x}+\frac{1}{9} (1-2 x)^{5/2} \sqrt{3+5 x}-\frac{343}{81} \int \frac{1}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx+\frac{250433 \int \frac{1}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx}{32400}\\ &=\frac{6401 \sqrt{1-2 x} \sqrt{3+5 x}}{5400}+\frac{59}{180} (1-2 x)^{3/2} \sqrt{3+5 x}+\frac{1}{9} (1-2 x)^{5/2} \sqrt{3+5 x}-\frac{686}{81} \operatorname{Subst}\left (\int \frac{1}{-7-x^2} \, dx,x,\frac{\sqrt{1-2 x}}{\sqrt{3+5 x}}\right )+\frac{250433 \operatorname{Subst}\left (\int \frac{1}{\sqrt{11-2 x^2}} \, dx,x,\sqrt{3+5 x}\right )}{16200 \sqrt{5}}\\ &=\frac{6401 \sqrt{1-2 x} \sqrt{3+5 x}}{5400}+\frac{59}{180} (1-2 x)^{3/2} \sqrt{3+5 x}+\frac{1}{9} (1-2 x)^{5/2} \sqrt{3+5 x}+\frac{250433 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{3+5 x}\right )}{16200 \sqrt{10}}+\frac{98}{81} \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{3+5 x}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0741882, size = 105, normalized size = 0.82 \[ \frac{30 \sqrt{5 x+3} \left (-4800 x^3+14280 x^2-23482 x+8771\right )-250433 \sqrt{10-20 x} \sin ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )+196000 \sqrt{7-14 x} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{162000 \sqrt{1-2 x}} \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - 2*x)^(5/2)*Sqrt[3 + 5*x])/(2 + 3*x),x]

[Out]

(30*Sqrt[3 + 5*x]*(8771 - 23482*x + 14280*x^2 - 4800*x^3) - 250433*Sqrt[10 - 20*x]*ArcSin[Sqrt[5/11]*Sqrt[1 -
2*x]] + 196000*Sqrt[7 - 14*x]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(162000*Sqrt[1 - 2*x])

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 115, normalized size = 0.9 \begin{align*}{\frac{1}{324000}\sqrt{1-2\,x}\sqrt{3+5\,x} \left ( 144000\,{x}^{2}\sqrt{-10\,{x}^{2}-x+3}+250433\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ) -196000\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) -356400\,x\sqrt{-10\,{x}^{2}-x+3}+526260\,\sqrt{-10\,{x}^{2}-x+3} \right ){\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(5/2)*(3+5*x)^(1/2)/(2+3*x),x)

[Out]

1/324000*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(144000*x^2*(-10*x^2-x+3)^(1/2)+250433*10^(1/2)*arcsin(20/11*x+1/11)-1960
00*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))-356400*x*(-10*x^2-x+3)^(1/2)+526260*(-10*x^2-x+3
)^(1/2))/(-10*x^2-x+3)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 3.01203, size = 112, normalized size = 0.88 \begin{align*} -\frac{2}{45} \,{\left (-10 \, x^{2} - x + 3\right )}^{\frac{3}{2}} - \frac{103}{90} \, \sqrt{-10 \, x^{2} - x + 3} x + \frac{250433}{324000} \, \sqrt{10} \arcsin \left (\frac{20}{11} \, x + \frac{1}{11}\right ) - \frac{49}{81} \, \sqrt{7} \arcsin \left (\frac{37 \, x}{11 \,{\left | 3 \, x + 2 \right |}} + \frac{20}{11 \,{\left | 3 \, x + 2 \right |}}\right ) + \frac{9491}{5400} \, \sqrt{-10 \, x^{2} - x + 3} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^(1/2)/(2+3*x),x, algorithm="maxima")

[Out]

-2/45*(-10*x^2 - x + 3)^(3/2) - 103/90*sqrt(-10*x^2 - x + 3)*x + 250433/324000*sqrt(10)*arcsin(20/11*x + 1/11)
 - 49/81*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 9491/5400*sqrt(-10*x^2 - x + 3)

________________________________________________________________________________________

Fricas [A]  time = 1.58273, size = 355, normalized size = 2.77 \begin{align*} \frac{1}{5400} \,{\left (2400 \, x^{2} - 5940 \, x + 8771\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1} + \frac{49}{81} \, \sqrt{7} \arctan \left (\frac{\sqrt{7}{\left (37 \, x + 20\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{14 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) - \frac{250433}{324000} \, \sqrt{10} \arctan \left (\frac{\sqrt{10}{\left (20 \, x + 1\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{20 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^(1/2)/(2+3*x),x, algorithm="fricas")

[Out]

1/5400*(2400*x^2 - 5940*x + 8771)*sqrt(5*x + 3)*sqrt(-2*x + 1) + 49/81*sqrt(7)*arctan(1/14*sqrt(7)*(37*x + 20)
*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3)) - 250433/324000*sqrt(10)*arctan(1/20*sqrt(10)*(20*x + 1)*sqrt(
5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (1 - 2 x\right )^{\frac{5}{2}} \sqrt{5 x + 3}}{3 x + 2}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(5/2)*(3+5*x)**(1/2)/(2+3*x),x)

[Out]

Integral((1 - 2*x)**(5/2)*sqrt(5*x + 3)/(3*x + 2), x)

________________________________________________________________________________________

Giac [B]  time = 2.71397, size = 251, normalized size = 1.96 \begin{align*} -\frac{49}{810} \, \sqrt{70} \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{70} \sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} + \frac{1}{27000} \,{\left (12 \,{\left (8 \, \sqrt{5}{\left (5 \, x + 3\right )} - 147 \, \sqrt{5}\right )}{\left (5 \, x + 3\right )} + 13199 \, \sqrt{5}\right )} \sqrt{5 \, x + 3} \sqrt{-10 \, x + 5} + \frac{250433}{324000} \, \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{4 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^(1/2)/(2+3*x),x, algorithm="giac")

[Out]

-49/810*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))^2
/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) + 1/27000*(12*(8*sqrt(5)*(5*x + 3) - 147*sqrt(5))*(5*x
+ 3) + 13199*sqrt(5))*sqrt(5*x + 3)*sqrt(-10*x + 5) + 250433/324000*sqrt(10)*(pi + 2*arctan(-1/4*sqrt(5*x + 3)
*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))))